3.349 \(\int (a-a \sin (e+f x)) (a+a \sin (e+f x))^m (c+d \sin (e+f x))^{-1-m} \, dx\)

Optimal. Leaf size=139 \[ \frac{2 \sqrt{2} \sqrt{1-\sin (e+f x)} \sec (e+f x) (a \sin (e+f x)+a)^{m+1} (c+d \sin (e+f x))^{-m} \left (\frac{c+d \sin (e+f x)}{c-d}\right )^m F_1\left (m+\frac{1}{2};-\frac{1}{2},m+1;m+\frac{3}{2};\frac{1}{2} (\sin (e+f x)+1),-\frac{d (\sin (e+f x)+1)}{c-d}\right )}{f (2 m+1) (c-d)} \]

[Out]

(2*Sqrt[2]*AppellF1[1/2 + m, -1/2, 1 + m, 3/2 + m, (1 + Sin[e + f*x])/2, -((d*(1 + Sin[e + f*x]))/(c - d))]*Se
c[e + f*x]*Sqrt[1 - Sin[e + f*x]]*(a + a*Sin[e + f*x])^(1 + m)*((c + d*Sin[e + f*x])/(c - d))^m)/((c - d)*f*(1
 + 2*m)*(c + d*Sin[e + f*x])^m)

________________________________________________________________________________________

Rubi [A]  time = 0.230192, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1, Rules used = {3008, 140, 139, 138} \[ \frac{2 \sqrt{2} \sqrt{1-\sin (e+f x)} \sec (e+f x) (a \sin (e+f x)+a)^{m+1} (c+d \sin (e+f x))^{-m} \left (\frac{c+d \sin (e+f x)}{c-d}\right )^m F_1\left (m+\frac{1}{2};-\frac{1}{2},m+1;m+\frac{3}{2};\frac{1}{2} (\sin (e+f x)+1),-\frac{d (\sin (e+f x)+1)}{c-d}\right )}{f (2 m+1) (c-d)} \]

Antiderivative was successfully verified.

[In]

Int[(a - a*Sin[e + f*x])*(a + a*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(-1 - m),x]

[Out]

(2*Sqrt[2]*AppellF1[1/2 + m, -1/2, 1 + m, 3/2 + m, (1 + Sin[e + f*x])/2, -((d*(1 + Sin[e + f*x]))/(c - d))]*Se
c[e + f*x]*Sqrt[1 - Sin[e + f*x]]*(a + a*Sin[e + f*x])^(1 + m)*((c + d*Sin[e + f*x])/(c - d))^m)/((c - d)*f*(1
 + 2*m)*(c + d*Sin[e + f*x])^m)

Rule 3008

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])^(p_)*((c_) + (d_.)*si
n[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])/(f*Cos[e +
 f*x]), Subst[Int[(a + b*x)^(m - 1/2)*(c + d*x)^(n - 1/2)*(A + B*x)^p, x], x, Sin[e + f*x]], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 140

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^
FracPart[n]/((b/(b*c - a*d))^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*((b*c)/(b*c
- a*d) + (b*d*x)/(b*c - a*d))^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] &&  !GtQ[b/(b*c - a*d), 0] &&  !SimplerQ[c + d*x, a + b*x] &&  !SimplerQ[e +
 f*x, a + b*x]

Rule 139

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*((b*(e + f*x))/(b*e - a*f))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
((b*e)/(b*e - a*f) + (b*f*x)/(b*e - a*f))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 138

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*(a + b*x))/(b*c - a*d)), -((f*(a + b*x))/(b*e - a*f))])/(b*(m + 1
)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rubi steps

\begin{align*} \int (a-a \sin (e+f x)) (a+a \sin (e+f x))^m (c+d \sin (e+f x))^{-1-m} \, dx &=\frac{\left (\sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{a+a \sin (e+f x)}\right ) \operatorname{Subst}\left (\int \sqrt{a-a x} (a+a x)^{-\frac{1}{2}+m} (c+d x)^{-1-m} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac{\left (\sqrt{2} \sec (e+f x) (a-a \sin (e+f x)) \sqrt{a+a \sin (e+f x)}\right ) \operatorname{Subst}\left (\int \sqrt{\frac{1}{2}-\frac{x}{2}} (a+a x)^{-\frac{1}{2}+m} (c+d x)^{-1-m} \, dx,x,\sin (e+f x)\right )}{f \sqrt{\frac{a-a \sin (e+f x)}{a}}}\\ &=\frac{\left (\sqrt{2} a \sec (e+f x) (a-a \sin (e+f x)) \sqrt{a+a \sin (e+f x)} (c+d \sin (e+f x))^{-m} \left (\frac{a (c+d \sin (e+f x))}{a c-a d}\right )^m\right ) \operatorname{Subst}\left (\int \sqrt{\frac{1}{2}-\frac{x}{2}} (a+a x)^{-\frac{1}{2}+m} \left (\frac{a c}{a c-a d}+\frac{a d x}{a c-a d}\right )^{-1-m} \, dx,x,\sin (e+f x)\right )}{(a c-a d) f \sqrt{\frac{a-a \sin (e+f x)}{a}}}\\ &=\frac{2 \sqrt{2} F_1\left (\frac{1}{2}+m;-\frac{1}{2},1+m;\frac{3}{2}+m;\frac{1}{2} (1+\sin (e+f x)),-\frac{d (1+\sin (e+f x))}{c-d}\right ) \sec (e+f x) \sqrt{1-\sin (e+f x)} (a+a \sin (e+f x))^{1+m} (c+d \sin (e+f x))^{-m} \left (\frac{c+d \sin (e+f x)}{c-d}\right )^m}{(c-d) f (1+2 m)}\\ \end{align*}

Mathematica [F]  time = 4.76157, size = 0, normalized size = 0. \[ \int (a-a \sin (e+f x)) (a+a \sin (e+f x))^m (c+d \sin (e+f x))^{-1-m} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(a - a*Sin[e + f*x])*(a + a*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(-1 - m),x]

[Out]

Integrate[(a - a*Sin[e + f*x])*(a + a*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(-1 - m), x]

________________________________________________________________________________________

Maple [F]  time = 0.45, size = 0, normalized size = 0. \begin{align*} \int \left ( a-a\sin \left ( fx+e \right ) \right ) \left ( a+a\sin \left ( fx+e \right ) \right ) ^{m} \left ( c+d\sin \left ( fx+e \right ) \right ) ^{-1-m}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a-a*sin(f*x+e))*(a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^(-1-m),x)

[Out]

int((a-a*sin(f*x+e))*(a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^(-1-m),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int{\left (a \sin \left (f x + e\right ) - a\right )}{\left (a \sin \left (f x + e\right ) + a\right )}^{m}{\left (d \sin \left (f x + e\right ) + c\right )}^{-m - 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sin(f*x+e))*(a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^(-1-m),x, algorithm="maxima")

[Out]

-integrate((a*sin(f*x + e) - a)*(a*sin(f*x + e) + a)^m*(d*sin(f*x + e) + c)^(-m - 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-{\left (a \sin \left (f x + e\right ) - a\right )}{\left (a \sin \left (f x + e\right ) + a\right )}^{m}{\left (d \sin \left (f x + e\right ) + c\right )}^{-m - 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sin(f*x+e))*(a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^(-1-m),x, algorithm="fricas")

[Out]

integral(-(a*sin(f*x + e) - a)*(a*sin(f*x + e) + a)^m*(d*sin(f*x + e) + c)^(-m - 1), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sin(f*x+e))*(a+a*sin(f*x+e))**m*(c+d*sin(f*x+e))**(-1-m),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sin(f*x+e))*(a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^(-1-m),x, algorithm="giac")

[Out]

sage2